Learning Structural Causal Models through Deep Generative Models

A Survey on Methods, Guarantees, and Challenges

¹INRIA Saclay, ²Ekimetrics

Audrey Poinsot^{1,2}, Alessandro Leite¹, Nicolas Chesneau², Michèle Sébag¹, Marc Schoenauer¹

Given a known causal structure and observational data, what are the capabilities of existing Deep Structural Causal Models in answering counterfactual questions?

- Motivations

The true SCM M^* :

- $X_1 = f_1(U_1)$
- $X_2 = f_2(U_2)$
- $X_3 = f_3(X_1, X_2, U_3)$
- P(U) s.t. $U_3 \perp \!\!\! \perp U_1$ and $U_3 \perp \!\!\! \perp U_2$

Counterfactual query of interest Q:

 $Q(M^*) = P(X_3 | do(X_1), U)$

The world of SCMs

The learned DSCM \widehat{M} :

- $\bullet \quad X_1 = \widehat{f}_1(U_1)$
- $X_2 = \widehat{f}_2(U_2)$
- $X_3 = \widehat{f}_3(X_1, X_2, U_3)$
- $P(\widehat{U})$ s.t. $\forall i,j, \ \widehat{U_i} \perp \!\!\! \perp \widehat{U_j}$

with f_i a Deep Generative Model $\forall i$

Estimated counterfactual query \widehat{Q} :

 $\widehat{Q} = \widehat{P}(X_3 | do(X_1), \widehat{U})$

Classification

- DSCM

NCM

➤ Guarantees:

-BGM

 $(X) \rightarrow (Y)$

➤ No theoretical guarantees

Structural Causal Models

<u>▶ Def</u>: SCM whose mechanisms are **deep (conditional) generative models**

ightharpoons **Expressivity**: Given G there always exists an NCM L_3 -consistent with the true SCM

<u>▶Def</u>: SCM whose mechanisms are **bijective** w.r.t. the **exogeneous** noises

> Def: SCM whose mechanisms are feedforward neural networks

 $\succ L_3$ -Identifiability iif L_3 -Identifiability holds for the true SCM

hoGuarantees: L_3 -Identifiability under conditions on f_i in 3 cases

[Pawlowski et al., 2020]

[Xia *et al.*, 2021 & 2023]

[Nasr-Esfahany et al., 2023]

Numerous assumptions

Identification concerns

Learning Structural Causal Models through **Deep Generative Models**

DSCM NCM CausalT-GAN DECAF MLE-NCM DEAR Amortized CFGAN **GAN-NCM Implicit CausalGAN SCM-VAE WhatIfGAN CGN Amortized** DCM **VACA iVGAE Explicit Causal-NF CAREFL** Invertible **NF-DSCM Explicit NF-BGM** NCF

Few guarantees

- **Amortized Implicit**
- $\succ f_i$ is a conditional implicit-likelihood model learned with a loss implicitly considering U_i
- Adversarial learning, Loss to fit the distribution: Causal-TGAN, CausalGAN, CFGAN, DECAF, WhatIfGAN, CGN, DEAR, GAN-NCM, MLE-NCM, SCM-VAE

Amortized Explicit

- $\succ f_i$ is learned with an auto-encoder s.t. $g_i(PA(X_i), U_i) = f_i$ and $e_i(X_i, PA(X_i)) = U_i$
- > (Variational) (Graph) Auto Encoders, Diffusion Models: iVGAE, VACA, DCM

Invertible Explicit

- $\succ f_i$ is supposed diffeomorphic w.r.t U_i s.t. $U_i = f_i^{-1}(X_i, PA(X_i))$
- ➤ Normalizing Flow: Causal-NF, NF-DSCM, NCF, CARFEL, NF-BGM

Takeaways

Theoretical comparison

Causal structure: Knowing the causal ordering is sufficient

Hidden confounding

- NF-BGM and WhatIfGAN consider dependent noises
- NCM and NCF deal with semi-Markovian DAGs

Abduction step: Only 7 methods implement the abduction step while the sample-rejection procedure is applicable to all the methods

Identifiability guarantees

- NCM L_3 -identifiability result is applicable to all the methods except DCM
- DCM provides error bounds and L_3 -identifiability under sufficiency and additional hypothèses
- **NeuralID** algorithm enables to automatically check for point identification of a query given a DAG and a dataset

Empirical comparison

LSNM

PNL

Experimental evaluation

- High heterogeneity: datasets, causal task, metrics, ...
- Lack of a unified benchmark

ANM

Simulations lack sources of randomness (DAG, noise distribution, ...)

Applications

- Fairness: counterfactual fairness, fair prediction inprocessing and pre-processing
- **Explanability**: counterfactual explanations, scientific discovery
- Machine Learning robustness: Out-of-domain data augmentation, realistic dataset generation

Challenges & Opportunities

Lack of evaluation

- Lack of a proper benchmark: simulated data with different sources of randomness and different assumptions
- Lack of a complete evaluation strategy: data efficiency, computational time, robustness to unsatisfied assumptions, ...

From identification to partial identification

- Strong and/or un-testable hypotheses are taken (e.g., known causal structure, no selection bias)
- Whenever partial identification is impossible or too hard to get, **sensitivity analysis** is a solution

Sensitive applications

- The assumptions, in particular the causal graph, much be validated by experts beforehand
- **NeuralID** enable to test for point identification
- Sensitivity analysis is crucial