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Correlation is not causation

Does chocolate make you smart?

[Messerli, 2012]
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Causal Inference to the rescue

1. Observations - associations (L)

> Given that | eat chocolate, how likely am I to win a Nobel?
» Given that | am a woman, how likely am I to get a loan?
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3
Figure inspired from [Pearl and Mackenzie, 2018]



Causal Inference to the rescue

2. Interventions - action-guidance (L,)

> Does chocolate make you smarter?
» Does being a woman reduce your chances of getting a loan?

> P(yldO (x)) — L, assumpfions (e.g. causal graph, adjustment sefs)
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Causal Inference to the rescue

3. Counterfactuals - against existing observations (L3)

>  Would I have won the Nobel if | had eaten chocolate?
»  Would I have got the loan if I had been a man?

> P(y’ | do(x’), v, x) — L3 assumptions (e.g. exogeneous noise)
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Definition

A Structural Causal Model (SCM)is a tuple M := (F, P(U)) where F comprises a set of d
structural equations, f;, one for each endogenous random variable X; € X:
F ={X; = fi(PA(X;), Up)}ie[1,a) with PA(X;) the parents of X; and U; the exogeneous noise

Definition from [Pearl, 2009]
Example

X, = f1(U1)
X; = fz(Uz)
X3 = f3(X1’X2' Ua)

with P(U) S.t. U3 I Ul and U3 il Uz
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Scope of the survey
Structural Causal Models Deep Generative Models
? Numerous assumptions Flexibility, few assumptions
Identification concerns Few guarantees
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Learning Structural Causal Models through
Deep Generative Models
Existing works, capabilities, and remaining open questions
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