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Motivation, correlation is not causation

Does chocolate make you smart?

[Messerli, 2012]
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we need to translate interventions (do)
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Do calculus

An axiomatic system for replacing
probability formulas containing the
do operator with ordinary
conditional probabilities.

Does such a translation lead o a

unique result? — with enough
assumptions, yes.

Identifiability: A causal query Q is
identifiable from a class of models M (i.e.

set of assumptions) if for any pair of
models My, M, € M, Q(M;) = Q(M,).

[Pearl, 2009]
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Motivation: SCMs are convenient tools enabling the modeling of a wide range of causal queries (L3, multi-tfreatment, path-specific, ..)
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> What a mess ! We need a review for practitioners and researchers on existing works, their capabilities, and the remaining open questions.
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T[Zhou et al, 2023; Komanduri et al, 2023; Kaddour et al, 2022]
Figure inspired from [Xia et al, 2021]



DSCM, definition & classification w.r.t DGMs

Definition

A Deep Structural Causal Model (DSCM) is an SCM M := (F, P(U)) that uses deep-learning components fo model the structural assignments:

F = {Xl = fl(PA(Xl)' Ui)}iE[l,d]

with f; a neural network, PA(X;) the parents of X; induced by the known structure and U; the exogeneous noise

Definition from [Pawlowski et al, 2020]
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Invertible Explicit (£)

> fjis supposed diffeomorphic wrt U; st. U; = f;*(X;, PA(X;))

» Normalizing Flow: Causal-NF [4], NF-DSCM [2], NCF [5], CARFEL [6], NF-BGM [1]



DSCM, definition & classification w.r.t DGMs

Definition
A Deep Structural Causal Model (DSCM) is an SCM M := (F, P(U)) that uses deep-learning components fo model the structural assignments:
F={X; = fi(PAX}), U }ie[n,a)
with f; a neural network, PA(X;) the parents of X; induced by the known structure and U; the exogeneous noise

Definition from [Pawlowski et al, 2020]

Amortized Implicit (2D

»  f;is a conditional implicit-likelihood model learned with a loss implicitly considering U;

Abduction Step

»  Adversarial learning, Loss fo fit the distribution: Causal-TGAN [11], CausalGAN [12], CFGAN [13], > Sample Rejection procedure: U; st. f,(PA(X,), U;) = X;
i Sl i ) |22 VA

DECAF [14], WhatlfGAN [15], CGN [16], DEAR [17], GAN-NCM [3], MLE-NCM [3], SCM-VAE [10]

» Encoding: U; = ¢;(X;, PA(X)))
Amortized Explicit (Ap)

» Mechanism Inversion: U; = f1(X;, PA(X;))
»  fiis learned with an auto-encoder st. g;(PA(X;),U;) = f; and ei(Xl-,PA(Xi)) = U;

»  (Variational) (Graph) Auto Encoders, Diffusion Models: iVGAE [7], VACA [8], DCM [9] Abduction step
Class of DGM Mechanism Encoding Sample
Invertible Explicit (&) Inversion Rejection
Invertible Explicit v e v
> f:is supposed diffeomorphic wrt U; st. U; = Y (X;, PA(X; Amortised Explicit X v v
fi P > : = fi (X (X0)) Amortised Implicit X X v
» Normalizing Flow: Causal-NF [4], NF-DSCM [2], NCF [5], CARFEL [6], NF-BGM [1] (b) Abduction steps for the classes of DGMs
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DSCM, definition & classification w.r.t SCMs

SCM

N

- DSCM

> Definition: SCM whose causal mechanisms are deep (conditional) generative models

[Pawlowski et al, 2020]

» No theoretical guarantees

DSCM
/ CausalT-GAN [11] DECAF [14]
Amortized CFGAN [13]MLE-NCM [3] DEAR [17]
Imblicit GAN-NCM [3]
P CausalGAN [12] SCM-VAE [10]
WhatlfGAN [15] CGN [16]
Amortlz.ed DCM [9] iVGAE [7] VACA [8]
Explicit
. Causal-NF [4] CAREFL [6]
Invertible NF-DSCM [2]

Qplicit

NCF [5] NF-BGM [1] /

/




DSCM, definition & classification w.r.t SCMs

SCM

DSCM

-

NCM

@usalT—GAN [11]

Qplicit

DECAF [14]
Amortized CFGAN [13]MLE-NCM [3] DEAR [17]
Implicit GAN-NCM [3]
CausalGAN [12] SCM-VAE [10]
WhatifGAN [15] CGN [16]
Amortized .\, o, iVGAE [7] VACA [8]
Explicit
. Causal-NF [4] CAREFL [6]
Invertible

NF-DSCM [2]
QCF [5] NF-BGM [1]

- DSCM

» No theoretical guarantees

[Pawlowski et al, 2020]

> Definition: SCM whose causal mechanisms are deep (conditional) generative models

- NCM

> Guarantees:

» Lz-Identifiability iif L;-Identifiability holds for the true SCM

[Xia et al, 2021 & 2023]

> Definition: SCM whose causal mechanisms are feedforward neural networks

> Expressivity: Given a graph there always exists an NCM L3 consistent with the true SCM




DSCM, definition & classification w.r.t SCMs

SCM

DSCM

-

N CM @usalT—GAN [11]

DECAF [14]

Invertible

Qplicit

Amortized CFGAN [13]MLE-NCM [3] DEAR [17]
Implicit GAN-NCM [3]
P CausalGAN [12] SCM-VAE [10]
WhatifGAN [15] CGN [16]
Amortized 0 o iVGAE [7] VACA [8]
Explicit
f Causal-NF [4] CAREFL [6]

NF-DSCM [2]
QCF [5] NF-BGM [1]

BGM

\_ ANM

[18] LSNM [19] PNL [20]

- DSCM

> Definition: SCM whose causal mechanisms are deep (conditional) generative models

[Pawlowski et al, 2020]

» No theoretical guarantees

- NCM

» Definition: SCM whose causal mechanisms are feedforward neural networks
> Guarantees:

[Xia et al, 2021 & 2023]

> Expressivity: Given a graph there always exists an NCM L3 consistent with the true SCM
» Lz-Identifiability iif L;-Identifiability holds for the true SCM

BGM [Nasr-Esfahany et af, 2023]

> Definition: SCM whose causal mechanisms are bijective w.r.t. the exogeneous noises

» Guarantees: L;-Identifiability under conditions on f; in 3 cases

. -

Markovian Instrumental Variable Backdoor Criterion




DSCM, classification summary

Learning an SCM with DGMs

SCMclass DGM class
—  Deep Structural Causal Models — Invertible Explicit
L Neural Causal Models | Amortised Explicit
- Bijective Generation Mechanism | Amortised Implicit

Figures from [Poinsot et al, 2024]



DSCM, classification summary

Figures from [Poinsot et al, 2024]

Learning an SCM with DGMs

SCMclass

- Deep Structural Causal Models

L Neural Causal Models

- Bijective Generation Mechanism

DGM class
— Invertible Explicit

— Amortised Explicit

Amortised Implicit

Ahbduction step
Class of DGM Mechanism Encoding Sample
Inversion Rejection
Invertible Explicit v v v
Amortised Explicit X v v
Amortised Implicit X X v

(b) Abduction steps for the classes of DGMs



DSCM, classification summary

Learning an SCM with DGMs

SCMclass

- Deep Structural Causal Models

L Neural Causal Models

- Bijective Generation Mechanism

Class Mechanism Identifiability Guarantees
DSCM  Neural network -
NCM Feedforward La-id. (resp. L£2) iif L3-id.

(resp. L2) from the true SCM
L3-1d. for three settings™ cf.
Theorems 5.1, 5.2 and 5.3

neural network

BGM  Bijective noise

*Markovian, Instrumental Variable, and Backdoor Criterion

(a) Identifiability guarantees of the classes of SCMs

Figures from [Poinsot et al, 2024]

DGM class
— Invertible Explicit

— Amortised Explicit

Amortised Implicit

Ahbduction step
Class of DGM Mechanism Encoding Sample
Inversion Rejection
Invertible Explicit v v v
Amortised Explicit X v v
Amortised Implicit X X v

(b) Abduction steps for the classes of DGMs



DSCM, classification summary

Learning an SCM with DGMs
|

SCMclass DGM class
- Deep Structural Causal Models — Invertible Explicit
L Neural Causal Models | Amortised Explicit
- Bijective Generation Mechanism | Amortised Implicit

Class Mechanism Identifiability Guarantees Abduction step
DSCM  Neural network - ~ Ta - .

. .. . Class of DGM Mechanism Encoding Sample
NCM Feedforward La-id. (resp. L£2) iif L3-id. Inversion Rejection

neural network (resp. L2) from the true SCM

BGM Bijecti\l'e noise ‘C-'*_ld‘ for three Sf:“.‘.l['lgfi cf. o— oa— Invertible Exphctf v / M/
Theorems 5.1, 5.2 and 5.3 Amortised Explicit X v v
*Markovian, Instrumental Variable, and Backdoor Criterion Amortised Implicit X X v

(a) Identifiability guarantees of the classes of SCMs (b) Abduction steps for the classes of DGMs

However, each method has its own characteristics.
“What should | choose?”

Figures from [Poinsot et al, 2024]



DSCM, hypotheses & guarantees

Classification

Additional Hypotheses

Additional Guarantees

o . Causal Hidden . Available Identifiability, Expressivity,
Method SCM class 3;;:{ Structure  Confounder Data Assumptions Abduction Bounds . Y
NF-BGM [1] BGM, NCM IE DAG v - Inversion -
NF-DSCM [2] BGM, NCM IE DAG X Ji diffeomorphic Inversion -
GAN-NCM; NCM Al DAG v - Sample -
MLE-NCM [3] Rejection
Causal-NF [4] BGM, NCM IE Ordering X fi diffeomorphic Inversion  Model id. up to invertible
transformation of U
NCF [5] BGM, NCM IE DAG v J[i diffeomorphic Inversion -
CARFEL [6] BGM, NCM IE DAG, 0 X Affine autoregres- Inversion  Model id. in bivariate case
sive flow
iVGAE [7] NCM AE DAG X - X -
VACA [8] NCM AE DAG X - Encoding  Lz-expressivity if the decoder
is deep enough cf. Prop.2
DCM [9] - AE  Ordering X - Encoding L3-id. with error bounds cf.
Corollary | & 2
SCM-VAE [10] NCM Al DAG X Additive noise on X -
attributes
Causal-TGAN NCM Al DAG X - X =
[11]
CausalGAN [12] NCM Al DAG X - X -
CFGAN [13] NCM Al DAG X Categ. outcome & X -
sensitive feature
DECAF [14] NCM Al DAG X - X -
WhatlfGAN [15] NCM Al DAG v - X 5
CGN [16] NCM Al DAG™ T Image with at- X -
tributes
DEAR [17] NCM Al Ordering X High-dimensional X Data to atiribute encoder dis-
data with attributes entanglement

TL;DR

v' Hypotheses are linked to the choice of Generative Model
v’ Except NCM & BGM L -identifiability results, few to no guarantees

# A common cause is represented by an additional exogenous noise, "Only a confounded trivariate DAG is considered
*Invertible Explicit (IE), Amortised Explicit (AE), and Amortised Implicit (AT)

Table 2: Hypotheses and guarantees of deep structural causal models. The classification (Figure 1) enables one to spot the identifiability

results inherited by the SCM class and the compatible abduction step procedures.

Table from [Poinsot et al, 2024]

arXiv:2405.05025
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Classification

Additional Hypotheses

Additional Guarantees

o . Causal Hidden . Available Identifiability, Expressivity,
Method SCM class 3;;:{ Structure  Confounder Data Assumptions Abduction Bounds . Y
NF-BGM [1] BGM, NCM IE DAG v - Inversion -
NF-DSCM [2] BGM, NCM IE DAG X Ji diffeomorphic Inversion -
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MLE-NCM [3] Rejection
Causal-NF [4] BGM, NCM IE Ordering X fi diffeomorphic Inversion  Model id. up to invertible
transformation of J
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VACA [8] NCM AE DAG X - Encoding  Lz-expressivity if the decoder
is deep enough cf. Prop.2
DCM [9] - AE  Ordering X - Encoding L3-id. with error bounds cf.
Corollary | & 2
SCM-VAE [10] NCM Al DAG X Additive noise on X -
attributes
Causal-TGAN NCM Al DAG X - X =
[11]
CausalGAN [12] NCM Al DAG X - X -
CFGAN [13] NCM Al DAG X Categ. outcome & X -
sensitive feature
DECAF [14] NCM Al DAG X - X -
WhatlfGAN [15] NCM Al DAG v - X -
CGN [16] NCM Al DAG™ T Image with at- X -
tributes
DEAR [17] NCM Al Ordering X High-dimensional X Data to atiribute encoder dis-

data with attributes

entanglement

TL;DR

v' Hypotheses are linked to the choice of Generative Model
v’ Except NCM & BGM L -identifiability results, few to no guarantees

# A common cause is represented by an additional exogenous noise, "Only a confounded trivariate DAG is considered
*Invertible Explicit (IE), Amortised Explicit (AE), and Amortised Implicit (AT)

Table 2: Hypotheses and guarantees of deep structural causal models. The classification (Figure 1) enables one to spot the identifiability

results inherited by the SCM class and the compatible abduction step procedures.

Table from [Poinsot et al, 2024]

> Causal structure

e Causal order is enough

arXiv:2405.05025
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Additional Guarantees

o . Causal Hidden . Available Identifiability, Expressivity,
Method SCM class 3;;:{ Structure  Confounder Data Assumptions Abduction Bounds . Y
NF-BGM [1] BGM, NCM IE DAG v - Inversion -
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Corollary | & 2
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CGN [16] NCM Al DAG™ v Image with at- X -
tributes
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data with attributes
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TL;DR

v' Hypotheses are linked to the choice of Generative Model
v’ Except NCM & BGM L -identifiability results, few to no guarantees

# A common cause is represented by an additional exogenous noise, "Only a confounded trivariate DAG is considered
*Invertible Explicit (IE), Amortised Explicit (AE), and Amortised Implicit (AT)

Table 2: Hypotheses and guarantees of deep structural causal models. The classification (Figure 1) enables one to spot the identifiability

results inherited by the SCM class and the compatible abduction step procedures.

Table from [Poinsot et al, 2024]

> Causal structure

Causal order is enough

» Hidden confounding
BGM and WhatIfGAN consider correlated exogeneous noises
NCF and NCM deal with semi-Markovian DAGS

arXiv:2405.05025
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Classification

Additional Hypotheses
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» Causal structure
e Causal order is enough

» Hidden confounding

* BGM and WhatlfGAN consider correlated exogeneous noises
* NCF and NCM deal with semi-Markovian DAGs

> Data assumptions
* SCM-VAE, DEAR encode images infro causally linked attributes
* NFs = diffeomorphic mechanisms assumptions
*  WhatlfGAN is designed fo deal with variables of different dimensions



DSCM, hypotheses & guarantees

[ ]
Classification Additional Hypotheses Additional Guarantees TL’DR
“auss i ifiabili ssivi v’ Hypotheses are linked to the choice of Generative Model
Method SCM class DGM g.d.lls\d.] gldt}cn i Data Assumptions :;‘:j]]db']e ]denl](ildb]]lly, Expressivity, YpP ‘ SO
class* >tucture Confounder uction Bounds v Except NCM & BGM Ls-identifiability results, few fo no guarantees
NF-BGM [1] BGM, NCM IE DAG v - Inversion -
NF-DSCM [2] BGM, NCM IE DAG X Ji diffeomorphic Inversion - Tvse
GAN-NCM; NCM Al DAG Ve - Sample - > Causal structure arXiv:2405.05025
MLE-NCM [3] Rejection . ,
Causal-NF [4] BGM, NCM IE Ordering X fi diffeomorphic Inversion  Model id. up to invertible Causal order is enough
transformation of UJ
NCF [5] BGM,NCM IE  DAG v Ji diffeomorphic ~ Inversion - » Hidden confounding
CARFEL [6] BGM, NCM IE DAG, 0 X Affine autoregres- Inversion  Model id. in bivariate case . : .
sive flow BGM and WhatIfGAN consider correlated exogeneous noises
iVGAE [7] NCM AE DAG X - X - * NCF and NCM deal with semi-Markovian DAGs
VACA [8] NCM AE DAG X - Encoding  Lz-expressivity if the decoder
is deep enough cf. Prop.2 H
DCM [9] - AE  Ordering X - Encoding L3-id. with error bounds cf. » Data assumphons ) ) ] ]
Corollary | & 2 * SCM-VAE, DEAR encode images infro causally linked attributes
SCM-VAE [10] NCM Al DAG X Additive noise on X - * NFs = diffeomorphic mechanisms assumptions
attributes . ’ B ’ ’ ; B -
Causal-TGAN NCM Al DAG X . X . WhatlfGAN is designed to deal with variables of different dimensions
[11] .
CausalGAN [12] NCM Al DAG X - X - » Abduction
B e — Ll X e x :  Only 7 methods implement the abduction step
sensitive feature
DECAF [14] NCM Al DAG X - X -
WhatlfGAN [15] NCM Al DAG v - X -
CGN [16] NCM Al DAG™ v Image with at- X -
tributes
DEAR [17] NCM Al Ordering X High-dimensional X Data to atiribute encoder dis-
data with attributes entanglement

# A common cause is represented by an additional exogenous noise, "Only a confounded trivariate DAG is considered

*Invertible Explicit (IE), Amortised Explicit (AE), and Amortised Implicit (AT)

Table 2: Hypotheses and guarantees of deep structural causal models. The classification (Figure 1) enables one to spot the identifiability
results inherited by the SCM class and the compatible abduction step procedures.

Table from [Poinsot et al, 2024]



DSCM, hypotheses & guarantees

[ ]
Classification Additional Hypotheses Additional Guarantees TL’DR
s : ifiabili sgivi v' Hypotheses are linked to the choice of Generative Model
Method SCMclass DGM g"”“‘\‘” g‘d'}c" dor Data Assumptions :;‘:j"“".]" gk’““{i“’b"“y’ Expressivity, P SR
clagg* Structure  Confounder uction  Bounds v' Except NCM & BGM Lg-identifiability results, few to no guarantees
NF-BGM [1] BGM, NCM IE DAG v - Inversion -
NE-DSCM (2] BGM, NCM IE DAG X J[i diffeomorphic Inversion - Tve
GAN-NCM:; NCM Al DAG s _ Sample _ > Causal structure aI'XIV.21I-05.05025
MLE-NCM [3] Rejection . C lorder i h
Causal-NF [4] BGM,NCM IE  Ordering X f; difftcomorphic ~ Inversion Model id. up to invertible ausal order Is enoug
transformation of U
NCF [5] BGM,NCM IE DAG vt f; diffeomorphic ~ Inversion - » Hidden confounding
CARFEL [6] BGM, NCM IE DAG, 0 X Affine autoregres- Inversion  Model id. in bivariate case o . :
sive flow BGM and WhatIfGAN consider correlated exogeneous noises
iVGAE [7] NCM AE DAG X - X - * NCF and NCM deal with semi-Markovian DAGs
VACA [8] NCM AE DAG X - Encoding  Lz-expressivity if the decoder
is deep enough cf. Prop.2 H
DCM [9] - AE  Ordering X - Encoding  L£3-id. with error bounds cf. » Data assumptions ] ) ] ]
Corollary | & 2 * SCM-VAE, DEAR encode images infro causally linked attributes
SCM-VAE [10] NCM Al DAG X Additive noise on X - * NFs = diffeomorphic mechanisms assumptions
attributes . . ) . . . . )
Causal-TGAN NCM Al DAG X - X . WhatlfGAN is designed to deal with variables of different dimensions
[11]
CausalGAN [12] NCM Al DAG X - X - > Abduction
B SIEL = L X Sl TIETE x -  Only 7 methods implement the abduction step
sensitive feature
DECAF [14] NCM Al DAG X - X - T
WhatlfGAN [15] NCM Al  DAG v = X - > Identifiability guarantees
CGN [16] NCM Al DAG v ﬁﬂiiis with at- X . * NCM identifiability result applicable to everyone except DCM
DEAR [17] NCM Al Ordering X High-dimensional X Data to atiribute encoder dis- * DCM provides error bounds & Ls-identifiability but under sufficiency
data with attributes entanglement * NeurallD algorithm to test for point identification

# A common cause is represented by an additional exogenous noise, "Only a confounded trivariate DAG is considered

*Invertible Explicit (IE), Amortised Explicit (AE), and Amortised Implicit (AT)

Table 2: Hypotheses and guarantees of deep structural causal models. The classification (Figure 1) enables one to spot the identifiability
results inherited by the SCM class and the compatible abduction step procedures.

Table from [Poinsot et al, 2024]



DSCM, hypotheses & guarantees

[ ]
Classification Additional Hypotheses Additional Guarantees TL’DR
s : ifiabili sgivi v' Hypotheses are linked to the choice of Generative Model
Method SCMclass DGM g"”“‘\‘” g‘d'}c" dor Data Assumptions :;‘:j"“".]" gk’““{i“’b"“y’ Expressivity, P SR
clagg* Structure  Confounder uction  Bounds v' Except NCM & BGM Lg-identifiability results, few to no guarantees
NF-BGM [1] BGM, NCM IE DAG v - Inversion -
NE-DSCM (2] BGM, NCM IE DAG X J[i diffeomorphic Inversion - Tve
GAN-NCM:; NCM Al DAG s _ Sample _ > Causal structure aI'XIV.21I-05.05025
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Causal-NF [4] BGM,NCM IE  Ordering X f; difftcomorphic ~ Inversion Model id. up to invertible ausal order Is enoug
transformation of U
NCF [5] BGM,NCM IE DAG vt f; diffeomorphic ~ Inversion - » Hidden confounding
CARFEL [6] BGM, NCM IE DAG, 0 X Affine autoregres- Inversion  Model id. in bivariate case o . :
sive flow BGM and WhatIfGAN consider correlated exogeneous noises
iVGAE [7] NCM AE DAG X - X - * NCF and NCM deal with semi-Markovian DAGs
VACA [8] NCM AE DAG X - Encoding  Lz-expressivity if the decoder
is deep enough cf. Prop.2 H
DCM [9] - AE  Ordering X - Encoding  L3-id. with error bounds cf. » Data assumptions ] ) ] ]
Corollary | & 2 * SCM-VAE, DEAR encode images infro causally linked attributes
SCM-VAE [10] NCM Al DAG X Additive noise on X - * NFs = diffeomorphic mechanisms assumptions
attributes o - - ] . p ] p
Causal-TGAN NCM Al DAG X - X . WhatlfGAN is designed to deal with variables of different dimensions
[11]
CausalGAN [12] NCM Al  DAG X - X - > Abduction
B SIEL = L X Sl TIETE x -  Only 7 methods implement the abduction step
sensitive feature
DECAF [14] NCM Al DAG X - X - T
WhatlfGAN [15] NCM Al  DAG v = X - > Identifiability guarantees
CGN [16] NCM Al DAG v ﬁﬂiiis with at- X . * NCM identifiability result applicable to everyone except DCM
DEAR [17] NCM Al Ordering X High-dimensional X Data to atiribute encoder dis- * DCM provides error bounds & Ls-identifiability but under sufficiency
data with attributes entanglement * NeurallD algorithm to test for point identification

# A common cause is represented by an additional exogenous noise, "Only a confounded trivariate DAG is considered

*Invertible Explicit (IE), Amortised Explicit (AE), and Amortised Implicit (AT)

“Theory is a good first filtering.

Table 2: Hypotheses and guarantees of deep structural causal models. The classification (Figure 1) enables one to spot the identifiability
results inherited by the SCM class and the compatible abduction step procedures.

However, | don’t want to face a huge
drop in performances.”
9

Table from [Poinsot et al, 2024]



DSCM, evaluation & applications

TL;DR

v' High heterogeneity in the evaluation
v’ Applied to sensitive use cases

arXiv:2405.05025

Method Dataset PCH DSCM Comparison Applications
NF-BGM [1] Ellips generation simulations Ly X Video streaming simulations for adaptive
bitrate
NF-DSCM |2] Morpho-MNIST L3 X Scientific discovery [Yu er al., 2023],
cyber-security data generation [Agrawal et
al., 2024]
GAN-NCM; Simulated SCMs L3 v GAN, MLENCM -
MLE-NCM [3]
Causal-NF [4] Simulated SCMs Ly v'"VACA, CARFEL  Counterfactual fairness & fair regulariza-
tion of classifier
NCF [5] Salary simulations using a L3 X Counterfactual fairness and explainability
simulated SCM
CARFEL |6] 4-dimentional  polynomial Lo & L3 X -
simulated SCM, fMRI
iVGAE [7] ASIA L2 X -
VACA [8] Simulated SCMs Ls X Counterfactual fairness
DCM [9] Simulated SCMs, TMRI L v'VACA, CARFEL -
SCM-VAE [10] Pendulum, CelebA Lo X -
Causal-TGAN [11]  ASIA, Child, ALARM, Insur- Ly X In-domain data augmentation
ance; Adult, Census, News
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